National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Functional analysis of the ERK signaling pathway in epithelial cells
Galvánková, Kristína ; Vomastek, Tomáš (advisor) ; Rösel, Daniel (referee)
The MAPK/ERK pathway, which is evolutionarily conserved in eukaryotes is one of the most intensively studied signaling pathways and consists of a three-tier cascade of Raf- MEK-ERK protein kinases. A variety of extracellular signals are transduced from receptors to hundreds of substrates by a series of sequential phosphorylations leading from Raf to MEK to ERK. The ERK pathway regulates a plethora of cell- and extracellular signal- specific responses such as gene expression, proliferation, differentiation, migration, and apoptosis. The proper execution of these physiological processes requires a precise temporal and spatial regulation of the pathway and disruption of the regulatory mechanisms leads to pathological consequence such as tumor transformation. Specificity and regulation of signal transduction are provided in part by the presence of isoforms at each level of the ERK signaling pathway. The functional differences between the effector protein kinases ERK1 and ERK2 have been controversial for a long time, but it is still unclear how important they are in achieving an appropriate cellular response. In this work, we focused on the functional characterization of ERK1 and ERK2 isoforms in MDCK epithelial cells. Specifically, we examined the effects of ERK2 inactivation on cell morphology and...
The role of ERK1 and ERK2 protein kinases in the MAPK/ERK signaling
Galvánková, Kristína ; Vomastek, Tomáš (advisor) ; Dráber, Peter (referee)
The MAPK/ERK cascade is highly conserved signalling pathway regulating cellular processes which are necessary for cell life, such as proliferation, differentiation, apoptosis or cell migration. All these cellular responses are the result of the processing of extracellular signals through three-tier ERK cascade consisting of protein kinases Raf, MEK and ERK. The signal is transmitted by sequential phosphorylation where RAF phosphorylates MEK and MEK phosphorylates and activates ERK. Protein kinase ERK then phosphorylates and regulates a wide range of substrates at different locations in the cell. This affects the cellular response to the extracellular signal. Regulation of this pathway on every level is very important and is modulated by interaction partners and adaptor proteins. Deregulation of the pathway as well as mutations of individual protein kinases can lead to severe pathological consequences. At the level of ERK, there are two isoforms, ERK1 and ERK2, which are more than 80 % identical at the amino acid level. Their high sequence similarity has triggered the interest of many authors for more detailed examination of both isoforms in respect of their evolutionary conservation and whether they are functionally redundant or whether they have specific functions. The aim of this work is to...
Influence of protein SGIP1 on partners participating in signalization of cannabinoid receptor 1
Pejšková, Lucie ; Blahoš, Jaroslav (advisor) ; Novotný, Jiří (referee)
The G-protein-coupled receptor (GPCR) family represents the largest family of cell surface receptors. GPCRs are activated by endogenous or exogenous ligands, and are targets for more than a quarter of currently used drugs. Activation of receptors initiates intracellular signaling pathways. This way the membrane receptors transfer information from the outside environment into the cell. Based on the signal the cell can respond to the changes of the environment. Key observation important for this thesis is interplay of cannabinoid and opioid signaling in vivo, which can have significant physiological effects1 . Cannabinoid receptor 1 (CB1R) and µ opioid receptor (MOR) belong to the rhodopsin family of receptors, and both are coupled with Gαi/o proteins2 . Both are located in certain areas in central nervous system (CNS) and share a lot of important features. Activation of both of the receptors leads to inhibition of adenylyl cyclase, thus decreasing the level of cyclic adenosine monophosphate in the cell, and modulates extracellular regulated kinase 1 and 2 (ERK1/2)2 . In view of the numerous anatomical, biochemical and pharmacological evidence supporting the existence of the functional interaction between opioid3 and cannabinoid receptor systems this topic became interesting for our research. In our...
The effect of endocannabinoid system on light entrainment of rat circadian system
Filipovská, Eva ; Bendová, Zdeňka (advisor) ; Balík, Aleš (referee)
Circadian system of mammals is generated in suprachiasmatic nuclei of hypothalamus. This system is synchronized with light conditions through phase shifts that occur after light exposition during the subjective night. Recent studies have shown that activation of endocannabinoid receptors attenuates the light-induced phase shifts and influences the ability of circadian system to light entrainment. The aim of this work is to examine this influence on behavioral level and on light-reactive cellular processes within the suprachiasmatic nuclei. Our results show that the activation of endocannabinoid system via CB1 receptor agonist modulates the light-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and the expression of c-Fos protein in neurons of suprachiasmatic nuclei in the rat's brain; these cellular processes correlate with the attenuation of light entrainment. Keywords: circadian system, suprachiasmatic nuclei, light entrainment, endocannabinoid system, CB1 receptors, extracellular signal-regulated kinase 1/2, ERK1/2, c-Fos
Circadian regulation of STAT3 protein in the SCN and it's activation by leptin in the SCN, other parts of hypothalamus and the pineal gland
Moníková, Veronika ; Bendová, Zdeňka (advisor) ; Jelínková, Dana (referee)
JAK/STAT signaling pathway is one of the most studied intracellular cascades transmitting signals from the extracellular environment to the cell nucleus in order to affect expression of target genes. Circadian clocks localized in the suprachiasmatic nuclei (SCN) of the hypothalamus are sensitive especially to light but they can respond to non-photic stimuli such as growth factors, opioids, leptin and cytokines that have been demonstrated to perform its function via the JAK/STAT signaling pathway. The recent findings of our laboratory demonstrated that STAT3 protein is highly produced by SCN of rat. Primary aim of our experiments was to test the circadian regulation of STAT3 production in SCN and describe the effect of exogenously administered leptin on STAT3 phosphorylation in the SCN, pineal gland and hypothalamic structures responsible for regulated feeding behavior and energy metabolism. Because activation of leptin receptors may stimulate a number of other signaling cascades, we chose phosphorylated forms of kinase ERK1/2 and GSK-3β as other markers of intracellular changes after administration of leptin in the studied structures. Our results proved rhythmic production of STAT3 protein in SCN of rat and indicated circadian regulation of sensitivity to leptin in hypothalamic structures. The data...
Elucidation of ERK1 and ERK2 protein kinases effect on cap-independent translation initiation
Přibyl, Miroslav ; Vopálenský, Václav (advisor) ; Vomastek, Tomáš (referee)
Protein kinases ERK1 and ERK2 are one of the most studied proteins in cell signalling. Both proteins are involved in a plethora of processes, such as phosphorylation and activation of kinases as part of signalling pathways. Enzymes ERK1 and ERK2 are part of MAPK/ERK signalling cascade, connected to many cellular including cell proliferation, cell growth or differentiation. The MAPK/ERK signalling cascade is often activated in different types of tumors, making it a candidate for developing new chemical inhibitors. One of the important questions in fundamental research of ERK1 and ERK2 protein kinases is the search for difference between these proteins. Current knowledge points to redundancy of both proteins, howver several examples suggest otherwise. Recently, the work presented in Casanova et al. 2012 indirectly suggests divergent effect of ERK1 and ERK2 on cap-independent translation initiation. In the Laboratory of RNA biochemistry we focus on HCV IRES (Hepatitis C Virus Internal Ribosome Entry Site) dependent translation initiation. This diploma thesis lead to establish RNA interference method in our laboratory and to establish reporter system to study ERK1 and ERK2 effect on HCV IRES dependent translation initiation. Based on our data acquired during our research, we present in this work...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.